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Abstract

The phasc of a frequency standard that uses P jodic interroga-
tion and control of a local oscillator (1,()) is degraded by a long-term
random-walk component induced by downconversion of 1 .0 noise into
the loop passhand. The 1)ick fortpula for the noiselevel of this degra-
dation can be derived from explicit solutions of two 10 control-loop
models. A swinmary of the derivations iS &lvenhere.

Introduction

In 1987, following a suggestion of 1,. Cutler, G. J.Dick [1] described a source
of long-term instabil ity for a ¢l ass of passive frequency standards that in-
cludes ion traps and atomic fountains. |11 these standards, the frequency
of alocal oscillator (1X)) is controlled by afeedback loopr whose detection
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a nd control opcrations arc periodic withsorne period 7 .. For each cycle, the
output of thedetector is a weighted average of the 10 frequency error over
the cycle. The weighting function g(t), derived from quantuin-mcecl 1anical
calculations, depends on the method by which the atoms are interrogated
by the RF ficld generated by upconversion of the 1.0 signal to the atomic
transition frequency [1, ‘2, 3]. Ingeneral, g(1) can be zero over a considerable
portion of the cycle. The 1.0 controlsignal over cach cycle is a function of
the d etector outputs from previous cycles.

‘J 'he bhurpose of a frequency-control loop is to attenuate the frequency
fluctuations of the 1 .0 inside the loop passband, while tolerating them outside
the passband. As Dick saw, though, the periodic interrogation causes out- of-
band 1,0 noise power, near the cycle frequency f.= 1 /7, and its harmonics,
Lo be downconverted into the loop passband, thus injecting random false
information about the current average 1.0 frequency into the control signal.
‘J ‘hisrandomfalse frequency correction causesacomponent. Of white ¥M | or
random walk of phase, to persist in the output of thelocked 1.0 (1,1 .0) over
the long term. 1 )ick gave a forrnula for the white-1"M noise level contributed
by this effect, namely,
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where 5,1 () is the spectral density of the Dick-effect por (ionof the nor-
malized frequency noise of the 1.1.0, S Y f) is the spectral density of the
normalized lrequency noise of  the free- ramming, 1.0, and gy is the Fourier
cocflicient.
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where ¢ (1) is assumed to be symmetric about 7../2. This level of white I'M
ncar Fourier frequency zero contributes an asymptotic component of Allan
variance given by

fqgl/ll O (0)

0y (1) ~ 27

(f(:7 > oo) (3)

My purpose here is to supplement previous derivations [], 2, 3, 4] of the
1 dick formula (1) by anapproachthat uses explicit thine- domain solutions of
simple 1,() control loop models with a genceral detection weighting function
g (t.). Carcful interpretation of these so] utions yields forrl as for the ],1 .0
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spectral density, and conditions for the validity of the Dick formula. These
modcls are not represented to be realistic models of actual frequency stan-
dards. By exhibiting the presence of the Dick effect in models of transparent
simplicity, 1 intend o remove any remaining doubt of its existence and to
isolate ils essential nature, in the hope of aiding, cflorts to reduce it.

This paper gives only a smmmnary of the solution method; details will be
submitted clsewhere.

2 Control-Loop Modcls

Iiigure 1 shows two modecls for an 1.O control loop. Model 1 is intended
to correspond to Dick’s models [1, 2. Model 2 extends the model of 1o
Presti, Patane, Rovera, and De Marchi [4] 1o a general weighting function. A
unified treatment of the two models is presented at the expense of a conflict,
of notation between this paper and [4]: because the model of Lo Presti
ct al. includes the ceffect of alternate interrogation of the two sides of a
Ramsey fringe, the cycle period 7, used here corresponds to the sammple period
Ty = 27 in [4], and the g (1) used in Model 2 really consists of {wo periods
of the ¢ (t) used in Model 1.

In Model 1, the box Gy represents a lincar {ime invariant filter with iin-
pulse responsc g (1) / (Tego)for 0 < t <1, and zero clsewhere. 1 is important
to observe that Gy has unity gain at DC. Its transfer function is
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The output of the box G at tiine t is

IE
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which is fictitious unless 1 is a multiple of 7. ‘Jhe output of the sampler at
time n7  is the nornalized interr ogation report
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for the nth cycle. (Recall the symmetry of g (1) about the midpoint. of the
cycle.) *J Liedetectionnoise terine,, cari represent >hoton- countt fluctuations



m {requency standards with optical detection, for example. The cumulative
sum of the crror signals, multiplied by a gain factor A between 0 and 1, is
the frequency correction 1y, that is applied to the 1,0 during the next cycle.
Iixcept for initial conditions, Model 1 is specified completely by (5) and the
cqualions
Yn Yno 17 A @10 o(nde) 1), (©
Yo () = yo () v 1 (1)1, <t <nl), ()
in which it is convenient to suppose that n runis through al integers.

In Moddl 2, the hold and integration cinits a delayed lincar interpolation of
the cumulative sum of the input to the hiold, modulo a constant of integration.
1 .ct y,, be A times that cumulative sum. ‘1’he]] v, again satisfics (6). In place
of (7) wc have

1
Yo (1) = yio (1)- (

, 1
1 —n-l])y,,]» (n -

;.):Un- 2, (n- ])rj‘('<t.< 7",]‘0-
1y

(8)
In Model 1, the frequency correction during a cycle is constant; here, it is a
ramp.

3 Summary of Solution Method

The derivation of the 11O frequency spectrum from these model equations
is carried out by thefollowing steps.

Irirst, by isolating the digital aspecets of the models, one can solve for .
In Model 1, substitution of (7) into ((i) gives afirst-order difference equation
for v, in terms of the quantity

wy: Ghy L()(”,];)-l (I (9)
The solution of this diflerence equation has the form y,, = Hgyw,, where 114
is a unity-gain lowpass digital single pole filter with transfer function
A

1- (13- Nz Vv
"The time constant is approximately 7./A for A << 1. The transient comn-

ponient of the solution is nieglected. M odel 2 gives a second-order d iflerence
cquation that is solved by the two pole filter

A
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4 Main and A liascd Spectra

Consider themainpart qo) of the 1,10 frequency spectrum. ‘Jhe 1,() spec-
{rum is multiplied by a factor that is O (f?) as f -»0. This is the basic
action of the first-order frequency control 100] », w] iichiatternmates thic excur-
sions Of the 1,() inside the loop bandwidth. For example, flicker I'M in the
1,0 is reduced to flicker I'M inthe 1,1,(), andrandom walk I'M is reduced
to white I'M. in addition, there is a low])assfiltered white detection noisc in
the 1,1,() frequency. We canregard 11, (.2) G1(f) as the closed-Imq) transfer
function from 1,() frequency noise to 1,0 correction signal.

‘J 1ic Dick eflect issupposed to corne from a 1011~-terl n w iite I'M coin-
ponent i the aliased spectrum. There is such a contribution if the aliased
spectrum (1 1) is contimious and positive at [ = (), Under reasonable condi-
tions, this is s0, and we may set f: O (z:1) in (1 1). Because 7, (1) - 1,
we 1l ave

Gy (kS

oo
55(0)= 23, Sy (kfe), (12)
k=1
where we have now used the symmetry of the summands aboul zero fre-
quency. “J'hisformula holds for one- sided spectral densitics also.
Thenumbers|Gh(kf.) Zare invariant to cyclic translations of the function
g (1) in time. It follows that the result (12) is invariant to shifts in t he time
origin, i.e, if t hel.lO phase is sampled on anvy time grid with spacing 7.,
then the samples will include a white-}'M component. with spect ral density
(12) at zcro frequency. If g (1) is symmnetric about 7;./2 for our t ime origin,
then

ey Ok
(7] (l”fc) - goa
where gx is given by (2). Thus (12) extends the Dick formula (1) to asymn-
metric weighting, functions.

The 1 ick formula, which gives the limiling value of spectral density at
zero Yourier frequency, is exact for both models, even though the 1,1,() spec-
trumn a nonzero frequencies is diflerent for the two models. A simple approx-
iination for the aliased spectrum (11) holds if the gain constant A is much
less than 1. Then the loop bandwidth is much less than f, (time constant
much greater than 7.). Asswine also that G (kf. -1 f) and S (kf, + f)can
be regarded as approximately constant for nonzero & and for J within the
loop bandwidth. Then, for such f, the aliased spectrum has approximately
the same shape as the frequency response of the digital filter 1,,, with valuc
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at 0 given by the 1)ick formula. For both models, this shape is l.orentzian.
Thus, the ] )ick-effect All an variance component take.s the asymptotic white-
I'M form (3) onl y for averaging times 7 greater than roughly twice tile loop
time constant. Inthis approximation, the 1 lick-effect and detection noiscs
appear inside the loop bandwidth, the non-aliased 1.O noise  outside.

5 Remarks

Although | have not considered any other models, the Dick effect appears to
be an inherent property of] »eriodic local-oscillator control loo] »s. For the two
models treated here, this was shown by a careful interpretation of explicit
solutions for the output frequency as function of time.

1 have now come full circle on this topic. My involvemnent began i 1987
when John 1)ick asked incto derive the spectrum of Gyo after sampling. 1
did not understand: after al, G is applied to yi.1.0, not ¥1.0- Nevertheless, 1
did the calculation, thereby contributing the factor 2 in 1)ick’s formula. Now,
in Fig. 2, we sce how the sampled Gy y1,0 fits into the picture. Could the
Dick cffect be cancelled by replacing the averaging, filter in the Upper branch
of I'ig. 2 by a G filtar? Alas  the existence of the block diagram in Fig. ‘2
is mathematical, not physical.
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Fig. 1. Simplificd models of local-oscillator control loops
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Fig. 2. Solution of both models for 1 1.0 frequency averages



